

Size mm

Actual size

Actual size

Steel Shot

Steel Grit

### High Carbon Steel Shot

\$660

S780

or special hardness. peening applications where the shot is suplied in either standard tempered martensite which provides optimum resilience fully heat treated condition. it has a uniform structure of finely steel shot of Faravardeh Fooladi Co. is a spherical product in the and resistance to fatigue. special steel shot is also suited to shot

\$550

| Phosphorus        | Sulfur     | Manganese     | Silicon    | Carbon        |                   | Density            | Hardness |       | Micro Structure | Mechanical<br>Characteristic   |      |
|-------------------|------------|---------------|------------|---------------|-------------------|--------------------|----------|-------|-----------------|--------------------------------|------|
| The second second | Max % 0.05 |               |            |               | Ch                | 7g/Cm <sup>3</sup> | (HRC)    | 38-48 | Steel Shot      | Tem                            | SI   |
| Max % 0.05        |            | % 0.6         | Min        | % 0.8         | Chemical Analysis | Cm <sup>3</sup>    | (HRC)    | 47-53 | Special Shot    | Tempered<br>Martenstie         | SHOT |
|                   |            | % 0.60 - 1.20 | Min % 0.40 | % 0.85 - 1.20 |                   |                    | (HRC)    | 40-48 | GP              | Te                             |      |
|                   |            |               |            |               |                   | 7g /Cm³            | (HRC)    | 50-60 | GL              | Tempered/Uniform<br>Martensite | GRIT |
|                   |            |               |            |               |                   |                    | (HRC)    | 62-67 | GH              | огт                            |      |

| perime | AE Sleep No. | 18-035 | 3-05 | 42-071 | 60085 | 71-10 | 330 | 390 | 2.17 | 550        | 7.24 | 789  | 930 | roduct<br>ize (mm)                                                  |
|--------|--------------|--------|------|--------|-------|-------|-----|-----|------|------------|------|------|-----|---------------------------------------------------------------------|
| 3.38   | 6            |        |      |        |       |       |     |     |      |            |      |      | 7   |                                                                     |
| 2.80   |              |        |      |        |       | 1     |     |     |      |            |      |      |     | 郑                                                                   |
| 2.36   |              |        |      |        |       |       |     |     |      |            |      |      | 1 3 | min                                                                 |
| 2.00   |              |        |      |        |       |       |     |     | 100  | 12         |      | 10 5 | 23  | & ma                                                                |
| 1.70   | u            |        |      |        |       |       |     | 7   | 1 2  | -          | 10 % | #3   |     | X CUII                                                              |
| 1.40   | T.           |        |      |        |       |       | 1   | 83  |      | 1 5        | 13   |      |     | nulati                                                              |
| 1.18   | 16           |        |      |        |       | 2     | 13  |     | 15   | 12         |      |      |     | ve pe                                                               |
| 1.00   | Ē            |        |      |        | 100   | 12    |     | 15  | 15   |            |      |      |     | rcenta                                                              |
| 0.85   | 2            |        |      | -      | 13    |       | 15  | 15  |      |            |      |      |     | iges a                                                              |
| 0.71   | ×            |        |      | 13     |       | 15    | 1.5 |     |      |            |      |      |     | llowe                                                               |
| 0.60   |              |        | 1    |        | 13    | 15    |     |     |      |            |      |      |     | %: min & max cumulative percentages allowed on corresponding sieves |
| 0.50   | ×            |        | 15   |        | 13    |       |     |     |      |            |      |      |     | сопте                                                               |
| 0.425  |              | 1      |      | 15     | _     |       |     |     |      |            |      |      |     | pond                                                                |
| 0.355  | 8            | 13     |      | 13     |       |       |     |     |      | The second |      |      |     | ing si                                                              |
| 0.30   | 36           |        | 13   | -      |       |       |     |     |      |            | -    | -    |     | eves                                                                |
| 0.18   |              | 12     | 13   | 10.00  |       |       |     |     |      | 1          |      |      |     |                                                                     |
| 0.125  | 5            | 13     |      |        |       |       |     |     |      |            |      |      |     |                                                                     |

| 0.125 E F Z         |                      |                     |                                       |                     |                    |                   |  |  |  |  |  |
|---------------------|----------------------|---------------------|---------------------------------------|---------------------|--------------------|-------------------|--|--|--|--|--|
| \$110<br>0.3 - 0.5  | \$170<br>0.42 - 0.71 | \$230<br>0.6 - 0.85 | \$280<br>0.71-1.0                     | \$330<br>0.85 - 1.2 | \$390<br>1.0 - 1.4 | S460<br>1.2 - 1.7 |  |  |  |  |  |
|                     |                      |                     |                                       |                     |                    |                   |  |  |  |  |  |
|                     |                      |                     |                                       |                     |                    |                   |  |  |  |  |  |
| 124                 |                      | Topic Service       | 1000                                  | Ministra.           | Mark I             |                   |  |  |  |  |  |
|                     |                      |                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                     |                    |                   |  |  |  |  |  |
|                     |                      |                     |                                       |                     |                    |                   |  |  |  |  |  |
|                     |                      |                     |                                       |                     |                    |                   |  |  |  |  |  |
| G120<br>0.125 - 0.3 | G80<br>0.18 - 0.42   | G50<br>0.3 - 0.710  | G40<br>0.42 - 1.0                     | G25<br>0.7 - 1.2    | G18<br>1.0-1.4     | G16<br>1.2 - 1.7  |  |  |  |  |  |

### STEELGRIT





## High Carbon Steel Grit

1.7 - 2.4

treated oversize shot pellets. as cast steel angular grit produced by crushing specially heat

### GP STEEL GRIT: (40-48 HRC)

1.4 - 2.0

sand of casting and scaling oxide. rounded in use, this type is particularly suited for removing this abrasive, which is angular when new, rapidly becomes

### GL STEEL GRIT (50-60 HRC)

blasting and is particularly suited to heavy descaling and it is harder than GP; it also loses its sharp edges during shot

GH has maximum hardness to maintain angularity during GH STEEL GRIT (62-67 HRC) surface preparation requirements operation and provides a constant cutting (etching) action.

# Granite Cutting (uses GH steel grit)

the process used for cutting hard stones, such as granite.

perfect rounded particle; it is a sphere. (Figure I) and G3 (sphericial conditioned), where G3 is the G1 (normal conditioned), G2 (double conditioned) conditioned cut wire is in 3 types: 2- conditioned cut wire Cut Wire abrasives are in two types:

I- cylindrical cut wire (as-cut)

on components of iron and steel

de-scaling, de-burring, de-flashing and shot peening general purpose of cut wire abrasives are cleaning carbon steel wires.

cut wire shots are made of high quality of cold drawn

is the first manufacturer of steel cut wire shot in IRAN.

Faravardeh Fooladi Co.: Steel Cut Wire:



"Igure 1: a: cylindrical cut wire

Characteristics:

**Bulk Density:** 

>7.7g/cm

Grain Shape:

Cylindrical, Spherical conditioned cut

wire(G1,G2,G3)

Hardness:

52-60

HRC,

### Cut Wire

| CWG  | CW54  | CW47  | CW41  | CW35  | CW32 | CW28  | CW23  | CW20 | CW17  | CW14  | CW12 | Cut-wire                     |
|------|-------|-------|-------|-------|------|-------|-------|------|-------|-------|------|------------------------------|
| 16   | 1.4   | 1.2   | 1     | 0.9   | 0.8  | 0.7   | 0.6   | 0.5  | 0.45  | 0.35  | 0.3  | Cut-wire Shot<br>Size (mm)   |
| 0223 | S-550 | S-460 | S-390 | S-330 |      | S-280 | S-230 |      | S-170 | S-110 | S-70 | Equivalent Cast<br>Shot Size |
| ri,  | 34    | 100   | 19.   |       |      |       |       |      |       |       |      |                              |